Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Sodium hydrogen bis(phenoxyacetate)

James Evans, ${ }^{\text {a }}$ Anoop Kapitan, ${ }^{\text {b }}$ Georgina Rosair, ${ }^{\text {c* }}{ }^{\text {Kevin J. }}$ Roberts ${ }^{\text {a,d }}$ and Graeme White ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Centre for Molecular and Interface Engineering, Department of Mechanical and Chemical Engineering, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, ${ }^{\mathbf{b}}$ A. H. Marks Ltd, Wyke, Bradford BD12 9EJ, England, ${ }^{\mathbf{c}}$ Department of Chemistry, Heriot Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, and ${ }^{\mathbf{d}}$ Centre for Particle and Colloid Engineering, Department of Chemical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England
Correspondence e-mail: g.m.rosair@hw.ac.uk

Received 15 November 2000
Accepted 21 November 2000
In the title compound, $\mathrm{Na}^{+} \cdot \mathrm{H}^{+} \cdot 2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}$, the anion contains a short Speakman-type hydrogen bond $[\mathrm{O} \cdots \mathrm{O}=2.413$ (2) \AA]. The anions and the Na atoms lie across twofold axes.

Comment

The structure of the title compound, (I), was determined during an investigation into the effect of impurities on the crystallization and intermolecular interactions of phenoxyacetic acid. Anhydrous sodium phenoxyacetate was crystallized from tap water to mimic the industrial manufacturing process undergoing investigation. The ratio of sodium to phenoxyacetate ions in (I) is $1: 2$ so an acidic H atom is required to balance the charges. H 22 was located on a twofold axis between two carboxy O atoms $\mathrm{O} 22 \cdots \mathrm{O} 22^{\mathrm{i}}$ [symmetry code: (i) $\left.1-x, y, \frac{5}{2}-z\right]$ which are 2.413 (2) \AA apart. This hydrogen bond is very short but precedented (Freyhardt et al., 2000; Speakman \& Muir, 1982; Speakman et al., 1981). This link is another strand which weaves around the inner ionic $\mathrm{Na}-\mathrm{O}-\mathrm{Na}$ core. H 22 makes another, longer bond with O 21 . This carboxylate O atom has close contacts with sodium ions whereas the other O atom, O22, has a closer contact with H22 [1.215 (5) Å].

(I)

The polymeric core of (I) consists of a carboxylate O atom (O21) bridging Na atoms forming a twisted ribbon, where the two $\mathrm{Na}-\mu$ - $\mathrm{O}-\mathrm{Na}$ planes are inclined at 48.5° to each other. These ribbons lie parallel to the crystallographic c axis. The sodium coordination sphere consists of four $\mathrm{Na} 1-\mathrm{O} 21$ contacts: two of 2.3385 (15) \AA and two of 2.3815 (14) \AA from four phenoxyacetic acid molecules. The latter two molecules with the longer $\mathrm{Na} 1-\mathrm{O} 21$ contacts also bond to sodium via

Figure 1
The asymmetric unit of (I); atoms H 22 and Na 1 lie on twofold rotation axes. Displacement ellipsoids are shown at the 50% probability level.
the phenoxy O atom, O 1 , where the $\mathrm{Na} 1-\mathrm{O} 1$ distance is $2.6102(15) \AA$. This packing arrangement is significantly different from that in sodium phenoxyacetate hemihydrate (Prout et al., 1971), where the sodium ion is surrounded by O atoms from one water and two phenoxyacetate molecules. The NaO core of (I) is surrounded on either side by the phenoxy groups which form hydrocarbon layers above and below the ionic core.

The carboxylate group is almost coplanar with the phenyl ring (angle between the planes containing COO and Ph groups, 8.2°) and several structural trends were identified in the carboxylate chain. Firstly, distortion of exo-O1 angles where both $\mathrm{C} 15-\mathrm{C} 10-\mathrm{O} 1$ and $\mathrm{C} 11-\mathrm{C} 10-\mathrm{O} 1$ [123.3 (18) and $116.34(17)^{\circ}$, respectively] deviate from the trigonal angle $\left(120^{\circ}\right)$. The distortion is thought to arise from the steric requirements of the carboxylate side chain, which is well documented among the phenoxyalkanoic series (Kennard et al., 1982). The distances of 1.273 (2) and 1.235 (2) \AA (C21O 22 and $\mathrm{C} 21-\mathrm{O} 21$) and the angles $111.75(16)$ and $121.59(17)^{\circ}(\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 20$ and $\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 20$, respectively) are similar to those seen in the hemihydrate [1.276 (10) and 1.240 (10) \AA; 114.2 (7) and 117.5 (7) ${ }^{\circ}$; Prout et al., 1971].

Figure 2
Packing arrangement viewed down the b axis. O atoms are cross-hatched and Na atoms have a diagonal stripe.

In phenoxyacetic acid, the similar $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{OH}$ distances [1.266 (3) and 1.263 (3) Å] are considered to originate from disorder of the acidic proton (Kennard et al., 1982).

Experimental

A sample of powdered sodium phenoxyacetate hemihydrate (SigmaAldrich) was dissolved in Edinburgh tap water and single crystals of (I) were obtained by slow evaporation.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{H}^{+} \cdot 2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}{ }^{-}$
$M_{r}=326.27$
Orthorhombic, Pbcn
$a=21.484$ (3) \AA
$b=9.4624$ (8) A
$c=7.3293(7) \AA$
$V=1490.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.454 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 39 reflections
> $\theta=1.90-17.49^{\circ}$
> $\mu=0.135 \mathrm{~mm}^{-1}$
> $T=160(2) \mathrm{K}$
> Plate, colourless $0.58 \times 0.34 \times 0.06 \mathrm{~mm}$

Data collection
Bruker P4 diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.966, T_{\text {max }}=0.992$
1814 measured reflections
1312 independent reflections
1020 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.036 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-1 \rightarrow 25 \\
& k=-11 \rightarrow 1 \\
& l=-1 \rightarrow 8
\end{aligned}
$$

3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.109$
$S=0.959$
1311 reflections
107 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{i}}$	$2.3385(15)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.6102(15)$
$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.3385(15)$	$\mathrm{Na} 1-\mathrm{Na} 1^{\mathrm{iv}}$	$3.6851(4)$
$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{iii}}$	$2.3815(14)$	$\mathrm{Na} 1-\mathrm{Na} 1^{\mathrm{ii}}$	$3.6851(4)$
$\mathrm{Na} 1-\mathrm{O} 21^{\text {iii }}$	$2.3815(14)$	$\mathrm{O} 21-\mathrm{C} 11$	$1.235(2)$
$\mathrm{Na} 1-\mathrm{O} 1^{2}$	$2.6102(15)$	$\mathrm{O} 22-\mathrm{C} 21$	$1.273(2)$
$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 20$	$121.59(17)$	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 20$	$111.75(16)$

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $1-x,-y, 2-z$; (iii) $1-x, y, \frac{3}{2}-z$; (iv) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 22^{\mathrm{i}}$	$1.215(5)$	$1.215(5)$	$2.413(2)$	$166(4)$
Symmetry code: (i) $1-x, y, \frac{5}{2}-z$.				

We thank EPSRC for a CASE award (JE) and A. H. Marks Ltd. We gratefully acknowledge G. Thomson for her comments and suggestions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1129). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Freyhardt, C. C., Wiebcke, M. \& Felsche, J. (2000). Acta Cryst. C56, 276-278.
Kennard, C. H. L., Smith, G. \& White, A. H. (1982). Acta Cryst. B38, 868-875.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Prout, C. K., Dunn, R. M., Hodder, O. J. R. \& Rossotti, F. J. C. (1971). J. Chem. Soc. A, pp. 1986-1988.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Speakman, J. C., Lehmann, M. S., Allibon, J. R. \& Semmingsen, D. (1981). Acta Cryst. B37, 2098-2100.
Speakman, J. C. \& Muir, K. W. (1982). Croat. Chem. Acta, 55, 233-248.

